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Abstract—Legged robots can be utilized in unstructured envi-
ronments, the locomotion and motion planning of legged robots
are of great importance. Six-legged robots are more challenging
to control due to its “mulitple-input, multiple-output, multiple
end-effectors” properties. By utilizing sim-to-real technique, we
can avoid the limitation of learning controller on a real physical
system. In this project, we designed a hierarchical controller
by utilizing deep reinforcement learning methods to perform the
tasks of navigation through obstacles and locomotion control. The
high level controller navigates through obstacles and generates
the footholds, and the low level controller controls each leg
to move the end-effector to the designated footholds. This
combination of multiple controller learning and human design is
more practical than end-to-end learning method because prior
knowledge can be more efficiently transferred to the learning
process. The applicability of the policy network is tested in both
simulation and real physical robot with promising results.

Index Terms—Robotics, local motion planning, reinforcement
learning

I. INTRODUCTION

Legged robots are a kind of bio-inspired robots which
utilize mechanical legs for movements [1] [2]. Compared to
wheeled or tracked robots, legged robots show significant
adaptability to rough terrain and flexibility to perform different
tasks. Six-legged robots(hexapods) have the advantages such
as high stability, high load than two or four legged robots
[3] [4]. In addition, hexapod’s upper platform remains stable
during motion, making it an ideal choice for mounting other
equipment.

Developing the control system of the robot in a simulation
environment instead of real environment is a widely used
approach [5] [6] [7] [8] [9]. It can make the process quicker,
cheaper and safer, as the experiment accidents in real envi-
ronment may potentially damage people and robots. However,
the controllers that perform well in the simulation environment
may not transfer easily to their real world counterparts, due to
all kinds of modeling error. Therefore, engineers have to bridge
this “reality gap” when transferring polices from simulation to
real environment [5] [6].
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Deep reinforcement learning (DeepRL) is very eligible for
developing control policies in simulation environments. It
allows the robot agent to learn the control policies by itself
through trail and error, instead of laborious tuning by human
engineers. Thank to the increasing computational power and
the simulation environments where the agent can trail and error
cheaply, reinforcement learning has made remarkably feats in
performing challenging tasks [10] [11].

This paper aims at training a motion and locomotion con-
troller on a real hexapod robot. The control policies is learned
in a simulation environment with DeepRL algorithms. The
controller is designed to perform tasks of path planning to
avoid obstacles and locomotion planning to control the robot’s
posture. An overview of the controller is shown in Fig. 1. The
controller is a combination of neural network based modules
and a traditional close loop control routine. The high level
controller (HLC) is a neural network which is responsible for
navigation and sending command on the low level controller
(LLC). The LLC is a close loop controller which utilize a
neural network to generate control signals. LLC receives the
commands from HLC, and is responsible for execution of the
command.

II. RELATED WORK
A. Modular Control

When solving the problem of robot control, modular control
method is widely used because of its practicability and low
coupling.The whole task of the robot is divided into sub-tasks,
and each sub-task will be handled by a model. These modules
interact with each other by means of dynamic operations
and heuristic functions. For example, the modular structure
in [12] contains three modules. The first module calculates
the positions of the legs at the next moment, and the second
module calculates the paths that the legs move to the above
positions. The last module controls the legs to follow the
paths to the specified positions. Similarly, work in [13] uses a
controller with two modules. One is a planning model which
computes an optimal path to reach the target point, the other is
a tracking model which follows the path and move the robot.
As mentioned above, these modular methods are popular and



Fig. 1. The control system graph. The high level controller generate footholds
positions and low level controller controls the robot’s movement to step into
those footholds positions

easy to control has problems like the under-utilization of the
robot’s own state and environmental information. The higher
module makes decisions based only on a simple model of the
ability of the lower module. The difference between the real
abilities and configuration of the lower module and that of the
model believed in higher module may leads to impracticable
actions for the lower module to perform.

B. Deep Reinforcement Learning Methods

Deep Reinforcement Learning techniques is suitable for
solving decision-making optimization problems. A robot can
be seen as an agent in the face of a specific situation, it
should take an action plan to achieve its goal, in other word,
to maximize the benefits. So, deep reinforcement learning
methods suit robotics well and becomes popular in robotics
[11]. The robot learns a control policy in a trail-and-error
manner, observing input states, choosing actions to interact
with environment, and tries to maximize the score of a reward
function [14]. There are many fully-developed algorithms to
tackle the problems of continuous action space, such as DDPG,
TRPO and PPO. Based on actor-critic DDPG can give the next
action in continuous actions [15]. TRPO can make the policy
always become better [16]. PPO has higher learning efficiency
[17]. These algorithms enables the policies for many tasks to
be learned, such as navigating [18], dribbling a ball [10], or
recover from fallen states [19] [20].

C. Sim-to-real

In order to transfer the policies learned from the simulation
environment to the real environment, many approaches has
been proposed to bridge the ”reality gap”. [21] [22] [23] [24]
These approaches can be roughly divided into two classes.
The first is to improve the simulation fidelity [21] [22]. As
some characteristic are hard to model, a data-driven way,
knows as system identification is usually used. The second
approach is to build more robust controllers that can adapt the
variations of system properties. The robust controllers can be

Fig. 2. Leg mechanism of our six-legged robot.

trained by adding noise to the dynamic system [5] [6] [9], the
policies and the observations. However, the perfectly accurate
model is always impossible and the noise on the system may
prevent the agent from learning policies that best exert the
hardware abilities. As a result, this two kinds of approaches are
often combined together. For example, J. Hwangbo et al. [8]
developed a success quadrupedal that can run at fast speed and
recover from falling down. They identify the model parameter
from the actual experiments and add noise to train a robust
controller.

III. OVERVIEW

The control system structure can be seen as Fig. 1. The
hexapod mainly contains a body and six legs. Each leg is
driven by three motors, having a three degree of DOF. [25].
As shown in Fig. 2, for each leg, the elongation of three P
motors [l1, l2, l3] affects position of the foot tips. In this paper,
we denote BCS as the Body coordinate system, as opposite
to the Global coordinate system GCS. For each leg, we use
[x, y, z] to denote the position in its BCS, and [l1, l2, l3] to
represent the elongation of the motors.

The control system is divided into two components. The
high-level controller (HLC) is a neural network that decides
the direction of motion and the place of footholds. The low-
level controller(LLC) is a neural network that learns to put
the feet to the target positions by controlling the motors of
the robot, following a hand crafted gait. The HLC and LLC
form a two level control hierarchy where the HLC takes
in the environment information and command on the LLC.
Receiving the command of HLC, the LLC makes a series of
movements so that the robot change to desired posture. HLC
is blocked until the LLC finishes. HLC and LLC are executed
in parallel with the simulation environment. The controllers
generate control signals in real time during the simulation.



Fig. 3. The terrain features consist of a 2D height map of the terrain sampled
on a regular grid. The internal part of the height map has a resolution of grid
size 0.05*0.05m and occupies an area of 2*2m. The external part of the map
has a resolution of 0.4*0.4m and occupies area of 4.8*4.8m

This hierarchical structure simplifies the task of the HLC,
enables it to explore policies relevant to the task efficiently.

The input to the HLC consists of the observation,oH , the
high-level-goal gH , and a phase variable φ. It outputs the
position to place the end-effector in the next step aH . The
oH contains the information of the robot’s current posture,
and the observation of the surrounding terrain. In this paper,
gH is about the target which the robot should get close to.
φ is a binary variable that represents which group of legs
is the swing leg in this turn. When called by HLC, the
LLC controls the robot to take a step in free-rectangular-
three-gait. The three feet in one group move independently
towards their intermediate target position at the same time.
The feet move along a rectangular trajectory, maximizing the
ability of stepping over obstacles.The actions of LLC are sent
to the simulation environment, which returns the new goal
and observations after executing the action. The environment
calculates a reward for HLC. The HLC is trained with DDPG
algorithm.

IV. HIGH LEVEL CONTROLLER

A. HLC state

The HLC input observation oH contains the hexapod’s con-
figuration, the terrain map, the phase variable. The hexapod’s
configuration is described by positions of the six feet tips in
the body coordinate system. As shown in Fig. 3, the terrain
map is a 2D height map of terrain sampled on the regular grid.
The terrain map consists of two parts, internal and external.
The internal part is fine-grained sampled to ensure the robot
see small obstacles and the external part extends the field of
observation and enables the robot to plan the path to bypass
the larger obstacles. The phase variable is binary and indicates
which group of legs are the swing legs in this step. The total
observation creates a 1757D vector with 1744 samples in the
terrain map and 12 feet positions and 1 phase variable.

]

Fig. 4. The snapshot of the task. The blue line traces the trajectory of the
robot and the dots of different colors represents the location where the feet
made contact with the ground. The cylinders are obstacles and the cube marks
the location of the target

B. HLC action

The HLC action space represents all positions of the foot-
print in the body coordinate system. The HLC is the target
position in relation to the body. The action contains three
positions, representing the target positions of the three swing
legs. As for the z positions of the target and the feet are all
considered 0, the positions are all 2D vectors. Thus, the target
is 2D vector and the action in 6D action space.

C. HLC task

The HLC is trained to navigate through some randomly
placed barriers and walls to reach the goal. The obstacles are
placed on a horizontal plane, some of them are short, which
can be stepped over by the robot, while others are not. A
target location is placed randomly in the map and is changed
randomly to another place whenever the robot get within
0.5m around the target. The HLC goal gH = (xtar, ytar) is
represented by the target position in the robot’s coordinate
system. The agent have to learn to recognize the path from
the terrain map T, deciding whether to bypass or to step over
the obstacles, and plan its footsteps accordingly. Fig. 4 shows
a snapshot of the task.

D. HLC reward

The reward system for the agent contains two parts, the
reward for approaching the target, and the penalty for falling
down or collision with obstacles. For the action a in iteration
t, which transform the state s into s

′
, the reward can be

represented as:

r(s, a, s′, t) = αto ∗ (max(0, d̂(t) − dtar(s′)))

+ αoff ∗ min(0, dtar(s) − dtar(s′)) + rcollid
(1)

Where dtar represents the distance between the center of
robot’s body and the target on the horizontal plane, and d̂(t) is
the shortest distance the agent ever get in this episode, d̂(t) =
min(d̂(t−1), dtar(s)). When the robot get closer to the target,
it is likely to get a positive reward, and it gets a negative reward



when the distance between it and the target get larger. Note
that this reward function ensures that the largest reward for the
agent is bounded given a map even when the max number of
iterations of one episode is not limited. In this way, the agent
cannot get reward by moving back and forth. It has to keep
getting closer to the target in order to earn positive rewards.
αoff and αto are two factors and are set to αto = 2, αoff = 1
in our experiments.

The collide penalty rcollid is 0 at most times and a constant
P whenever a collision with the obstacles in the environment
is detected, or the robot fell down. The robot is also regarded
as collide when it is in some dangerous state, for example, the
legs are crossing each other or the footholds are too close. In
our experiments the constant P is set to −20

E. HLC Network

The neural networks of HLC are 4-layer fully con-
nected(FC) neural networks. Although we have height map
that could be handled by Convolutional neural networks, the
height map do not contain as many feature information as a
picture, a simple FC network is enough. Moreover, we cannot
lose the exact positions of obstacles in pooling layers. Thus,
we use FC network to process the height map, the robot
posture, the goal, and the phase variable together.

V. LOW LEVEL CONTROLLER

A. LLC structure

The LLC is a close loop controller which consults a neural
network to generate control signals until the foot arrives at
the target position. When called by HLC, the LLC calculates
the difference between the target leg position and the current
leg position, queries its neural network for control signal, and
sends the control signal to the robot’s motor, updates the new
position and repeats the procedure until the difference to target
leg position is below a limit.

B. LLC network

Thanks to the central symmetric structure of the robot, we
can train a smaller network which takes in and out information
of only one leg, and apply it to six legs. The input of the neural
network is the current length of the three motors [l1, l2, l3] and
the difference between the target leg position and the current
leg position [∆x,∆y,∆z]. The output of the neural network is
the difference of the length of the three motors [∆l1,∆l2,∆l3]

The neural network of LLC is a simple 4 layer fully
connected network with each layer has a dimension of 128. It
is trained in a supervised manner with the data collected from
the robot in the vrep simulation environment.

VI. EXPERIMENTS

The supplemental videos give the most detailed information
about the motions of the robot. In the simulation environment,
the hexapod is 0.7m to 0.85m tall and has a mass of 290kg.
We use the ground friction of µ = 1. The robot’s motion is
calculated by the inverse kinematics functions supported by
v-rep and simulated with newton physics engine [26] with

dt=10ms . All neural networks are built and trained with
Pytorch [27]. The value of output actions of the network are
in range of [−0.1, 0.1].

The batch size for training the controller is 128, retrieved
from experience replay memory D, which records 10k most
recent tuples. The neural networks of actor are trained with
Adam optimizer with learning rate=0.0001, momentum factors
β1 = 0.9, β2 = 0.999. The networks of critic are trained with
learning rate=0.001, and the momentum factors the same as
actor’s. The controller use a discount factor γ = 0.99. The noise
for exploration added on the robot’s action is a value follow-
ing OrnsteinUhlenbeck process [28]with parameters(µ=0,θ =
0.15,σ=0.2). Besides the noise for exploration, the Gaussian
random noise with standard deviation = 0.01 is added on the
input and output of the network to make the system more ro-
bust. The controller is trained for approximately 10k episodes,
requiring about one day. All computations are performed with
Pytorch framework.

A. Toy environment

As the simulation in v-rep is too costly, we built a toy
environment to accelerate the training process. Instead of
doing kinetic simulation in the real v-rep environment, we
simulate the robot motions in our toy environment, where no
kinetic calculation performed. Our simulation environment is
based on the following assumptions and rules:
• All the feet stepping on the ground are fixed unless it is

lifted up.
• When any part of the robot collides with the other

obstacle in the environment, the simulation reports a clash
and stop.

Because the robot always has at least three feet stepping on
the ground and the center of weight is in the triangle formed by
the feet, the robot is stable at any moment. This static stability
allows us to save the calculation of the momentum and there-
fore optimize the speed of simulation. The two assumptions
above enable us to implement the toy environment. We can
calculate the robot’s position according to the position of its
fixed feet and the relative position between body and feet.
The toy environment shares the same configuration as the real
v-rep environment, and have little error comparing with that
with physical simulation. We train the agent with our toy-
environment and then test it in the v-rep environment to see
the result.

B. RESULTS

1) LLC performance: We collected the LLC performance
data in the robot running episodes. The average LLC error is
about 0.0403261 in the vrep environment. This error is the
distance between the target position and the actual position
under the control of the LLC. This precision is enough to
allow the hexapod walk smoothly in the vrep environment.

2) HLC performance: Fig. 5 shows the learning curve of
the HLC . In the v-rep simulation experiments, the robot learns
to step over low obstacles and bypass the tall ones. Note
the robot does not have the global information and therefore



Fig. 5. The learning curve of the controller. The policy learned at about 2500
Episodes reaches its optimal. The policies generated later have no obvious
difference in the way they take action.

Fig. 6. A snap shot of the real environment experiment. The experiment can
be seen from the attached video clips

cannot decide a global optimal plan to the target. We can see
from the trajectory of the robot that the policy has some kind
of arbitrariness as the movements are not directly pointing to
the target. Some kind of fine planned behaviors are observed,
as the robot learns to adjust its step length when approaching
a low barrier, in order to make it possible to step it over.

We also designed the system to run the policy to control a
real hexapod. We already have the terrain of the environment.
We set on the robot an Intel RealSense camera and locate
the robot via simultaneous localization and mapping (SLAM).
From the prior terrain and the real-time positioning, we
calculate the observed terrain and pass it to the controllers.
The controllers generate signals as they do in vrep. The robot
has a genuine inverse kinematic system to set the feet to the
desired feet positions in relation to the body coordinate system.
Fig. 6 is a snap shot of the real environment experiment but the
result of the real experiment can be best shown in the attached
video clips. From which we can see that the the robot behave
similarly as in the simulation environment, and doing properly
in avoiding collision and approaching the target.

C. Reward Function Comparisons

Work in [10] uses an reward function very different from
ours, although we share some similarity in the tasks, one for
controlling a bipedal toward target, and one for controlling
a hexapod robot. To compare which reward function is more
suitable for the problem in this paper, we modeled a reward
function in light of theirs, as follows.

r(s, a, s′, t) = exp
(
−S2

)
(2)

S = min(0, uTtar(p(s′) − p(s)) − v̂) (3)

where p(s) is the planetary position of the robot’s body in
state s and p(s′) − p(s) is robot’s body coordinate system
displacement in that step on the horizontal plane and uTtar is
a 2-D unit vector toward the target. In our experiments, v̂ is
set to 0.2, representing the desired step length by which the
robot walk approach the target. The robot get penalized when
it is moving slower than the desired motion.

The reward function for HLC in [10] uses speed instead
of displacement. However, as our hexapod is static stable,
speed is not an important factor for a HLC to consider, so
we replace the speed with displacement in our adaption of
reward function.

From experiment observation, this reward system is not as
good as the system we used in our work. Some undesirable
motions are observed as the trained agent prone to move back
and forth in face of a barrier. Its intention can be explained
as to avoid the danger of collide with the obstacle, which will
leads to a penalty, while earn rewards in half of the actions.
However, the reward system we used in previous work does
not give the agent the opportunity of getting reward from this
kind of behavior. The robot has to keep approaching the target
in order to get the positive reward.

Fig. 7 shows the comparison of performance between the
policy trained under the reward function in [10] and the policy
trained under the reward function we used in this paper. The
reward is calculated according to the adapted reward function
in [10], and to make the result more meaningful, the simulation
is carried out in the v-rep environment. As shown in this
figure, our reward system generally yields better policy, even
when the metric for comparing policies is the reward function
adapted in [10]. This shows an interesting phenomenon that
policies can perform better under one reward system when they
are trained under another reward function instead of trained
directly toward that reward function.

VII. DISCUSSION AND CONCLUSION

The learning of an agent with trail-and-error approach can
be very costly, thus the idea of learning in a simulated
environment instead of a real one is often used [29]. In this
work, we use the v-rep simulation environment as the toy
environment of the real environment, and v-rep also has its
toy environment in which the trail-and-error is performed.

The main concern for the v-rep simulation as the toy
environment is the robustness of the hexapod. For the sake
of the robustness, some Gaussian random noise are added
to the robot’s input and output. However, the main purpose
for the toy environment of v-rep is the simulation efficiency,
the improvement of speed exploit from the assumptions that
simplify the kinetic simulation procedure. The experiments
show that both toy environments derive good control policies
for the environment it is simulating.



Fig. 7. The total reward of the policies trained under different reward
functions. The blue line: the reward system we adapted in [10]. The orange
line: the reward system we use in this paper. The experiment is carried out in
vrep instead of toyrep. Because of the slowness of vrep simulation, the score
of all models is get from only one run in a hand designed map. The map
is much harder than that in the training environment to distinguish different
models.

Previous experiments have shown that different reward
system may lead to different performance, although their goals
are generally the same. Therefore, we can add some extra
terms in the reward function to guide the learning of the agent.
For example, we can add a term which encourage the agent in
favor of some gait style. Or we can add a term which penalize
the agent when it is too close to obstacle, making it more
robust. While the models we used in this paper are trained
with no such extra terms, we may do more research about the
effects of these terms in future work.

In this paper we described a method to learn controllers
by interacting with virtual environment. The controllers have
hierarchical structures containing policies learned by rein-
forcement learning and polices developed by human. Overall,
the method opens the door to learning-based approaches that
enable flexible and cheap development of control policies.
It allows for learning skills based on some level of human
implementation, such as the low level gait controller, and in
different kind of environment abstraction.
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